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Transition In A Supersonic Boundary Layer Due To Acoustic 
Disturbances 

P.Balakumar* 
NASA Langley Research Center, Hampton, VA 2368 1 

The boundary layer receptivity process due to the interaction of three- 
dimensional slow and fast acoustic disturbances with a blunted flat plate is 
numerically investigated at a free stream Mach number of 3.5 and at a high 
Reynolds number of 106/ich. The computations are performed with and without 
two-dimensional isolated roughness element located near the leading edge. Both the 
steady and unsteady solutions are obtained by solving the full Navier-Stokes 
equations using the 5"'-order accurate weighted essentially non-oscillatory (WENO) 
scheme for space discretization and using third-order total-variation-diminishing 
(TVD) Runge-Kutta scheme for time integration. The simulations showed that the 
linear instabdity waves are generated very close to the leading edge. The wavelength 
of the disturbances inside the boundary layer first increases gradually and becomes 
longer than the wavelength for the instability waves within a short distance from the 
leading edge. The wavelength then decreases gradually and merges with the 
wavelength for the Tollmien-Schlichting wave. The initial amplitudes of the 
instability waves near the neutral points, the receptivity coeficients, are about 1.20 
and 0.07 times the amplitude of the free-stream disturbances for the slow and the 
fast waves respectively. It was also revealed that small isolated roughness element 
does not enhance the receptivity process for the given nose bluntness. 

Introduction 
Transition from laminar to turbulent state in shear flows occurs due to evolution and interaction of 

different disturbances inside the shear layer. Though there are several mechanisms and routes to go from 
a laminar to a turbulent state, most of them generally follow these fundamental processes: 

Receptivity 

Linear instability 

Nonlinear instability and saturation 

Secondary instability and breakdown to turbulence 

In the receptivity process, the unsteady disturbances in the environments such as acoustic and turbulence 
interact with the inhomogeneities in the geometry such as roughness and generate instability waves inside 
the shear layer. In quiet environments, the initial amplitudes of these instability waves are small compared 
to any characteristic velocity and length scales in the flow. In the second stage, the amplitudes of these 
instability waves grow exponentially downstream and this process is governed by the linearized Navier- 
Stokes equation. Further downstream, the amplitudes of the disturbances become large and the nonlinear 
effects inhibit the exponential growth and the amplitude of the waves eventually saturate. In the next 
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stage, this finite amplitude saturated disturbances become unstable to two- and/or three-dimensional 
disturbances. This is called secondary instability and beyond this stage the spectrum broadens, due to 
complex interactions and further instabilities, and the flow becomes turbulent in a short distance 
downstream. In a previous study’, the interactions of two-dimensional acoustic disturbances with isolated 
two-dimensional roughness elements in a supersonic boundary layer have been investigated. It was found 
that isolated roughness does not enhance the generation of disturbances compared to that generated by 
acoustic disturbances. Since the two-dimensional instability waves are almost neutral, it was difficult to 
discern between the evolution of the forced continuous spectrum and the instability waves. In this paper, 
the generation and evolution of three-dimensional disturbances induced by acoustic disturbances and 
isolated roughness in a supersonic boundary layer with a free stream Mach number of 3.5 is investigated. 

Predicting transition onset and transition end points accurately, modeling this transitional region and 
modeling the turbulence region are the major difficulties in computing the aerodynamic quantities 
accurately using CFD codes. Our understanding of different instability mechanisms and of different 
transition processes in shear layers have greatly improved in the last several decades. However transition 
prediction methods have not made much progress. The main difficulty is due to the nature of the 
transition process itself. The transition process mainly depends on the boundary layer characteristics and 
on the frequency and wave number distributions of the disturbances that enter the boundary layer. The 
laminar boundary layer profiles can be computed easily. The problem is computing, predicting or 
prescribing the initial spectral, amplitude and phase distribution of the disturbances inside the boundary 
layer. The initial disturbances are generated by the interaction of the free stream unsteady disturbances 
and the roughness on the surface. These two are stochastic in nature and are difficult to quantify in 
general. In any new transition prediction strategy, one should quantify these two quantities and should 
determine what is the minimum amount of information necessary to predict the transition onset 
accurately. The objectives of this research work are to answer some of these questions and eventually to 
come up with an improved transition prediction method. 

There have been numerous investigations conducted on the interaction of acoustic waves with 
supersonic boundary layers. The interactions of acoustic waves with a supersonic boundary layer at finite 
incident angles using inhomogeneous stability equations are investigated in Ref. 2, 3 .  One important 
finding was that due to the interaction, the acoustic waves excite disturbances inside the boundary layer, 
which are much larger than that in the free stream. The interaction of stream wise acoustic waves with a 
non-parallel boundary layer was studied in Ref. 4. The analysis and the calculations showed that the 
disturbances inside the boundary layer reach significant values compared to that in the outside. It was also 
observed that there exists a critical Reynolds number where this excitation is the highest. Fedorov and 
Khokhlov’ investigated using asymptotic theory the excitation of first and second modes by the acoustic 
waves near the leading edge region. Gapanov6 showed that the energy is transmitted to the T-S waves 
near the critical region where the ratio between the amplitudes of the reflected waves and the incident 
wave is the largest. There are not many numerical calculations performed to investigate the interaction of 
acoustic waves with a flat plate including bluntness. 

There were several transition experiments performed at NASA Langley in the Mach 3.5 Supersonic 
Low-Disturbance tunnel. Boundary-layer transition data on a flat plate and on a cone, and free stream 
noise levels and the power spectral distribution of the free stream noise are presented in Ref. 7. As a first 
step, the computations are performed for the same conditions as in the experiment. The objectives are to 
understand the receptivity process near the leading edge of a flat plate and to estimate the receptivity 
coefficient of the instability waves generated near the leading edge. Computations are also performed to 
determine whether the slow or the fast acoustic modes are more efficient in generating the instability 
waves and to estimate the effect of the roughness elements in generating the instability waves when they 
interact with the acoustic waves. To answer these questions the following computations are performed for 
a supersonic flow over a flat plate with a blunted leading edge: ( 1 )  interaction of a three-dimensional slow 
acoustic disturbance with the boundary layer, (2) interaction of a three-dimensional fast acoustic 
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disturbance with the boundary layer, and (3) interaction of a three-dimensional slow acoustic disturbance, 
a two-dimensional roughness element with the boundary layer. A schematic diagram of the 
computational set up is depicted in Fig. I .  

Governing Equations. 
The equations solved are the three-dimensional unsteady compressible Navier-Stokes equations in 

conservation form 

- d Q; + -(qi d - cjj) = 0. at axj 

C puj I 0 1 

I P V I  ' 2  j 

'3; 

Here {x, y ,  z )  are the Cartesian coordinates, (u, v ,w) are the velocity components, p is the density, and p is 
the pressure. E is the total energy given by 

u2 + 2 + w2 
2 

E = e +  , 

e = c,T, p = pRT. (3) 

Here e is the internal energy and Tis  the temperature. The shear stress and the heat flux are given by 

auj 2 auk 
axj ax; 3 I ' k k  

+---a,.- (4) 

The viscosity (p) is computed using Sutherland's law and the coefficient of conductivity (k) is given 
in terms of the Prandtl number Pr. The variables p. p ,  T and velocity are non-dimensionalised by their 
corresponding reference variables p,, p K ,  T, and respectively. The reference value for length is 

computed by j x ,  where x, is a reference location. For the computation, the equations are 
transformed from physical coordinate system (x, y,  z) to the computational curvilinear coordinate system 
(E,q, <) in a conservative manner and the governing equations become 

d -  a -  - - Qi + - (qi - = o. 
at axj 

The components of the flux in the computational domain are related to the flux in the Cartesian 
domain by 

J Q; - Q  =-, [Ti]= fl[q;] 
J 
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Solution Algorithm 

The governing equations are solved using a 5th order accurate WENO scheme for space discretization 
and using a third order, total variation diminishing (TVD) Runge-Kutta scheme for time integration. 
These methods are suitable in flows with discontinuities or high gradient regions. These schemes solve 
the governing equations discretely in a uniform structured computational domain in which flow properties 
are known point wise at the grid nodes. They approximate the spatial derivatives in a given direction to a 
higher order at the nodes, using the neighboring nodal values in that direction, and they integrate the 
resulting equations in time to get the point values as a function of time. Since the spatial derivatives are 
independent of the coordinate directions, the method can easily add multidimensions. It is well known 
that approximating a discontinuous function by a higher order (two or more) polynomial generally 
introduces oscillatory behavior near the discontinuity, and this oscillation increases with the order of the 
approximation. The essentially nonoscillatory (ENO) and the improvement of these WENO methods are 
developed to keep the higher order approximations in the smooth regions and to eliminate or suppress the 
oscillatory behavior near the discontinuities. They are achieved by systematically adopting or selecting 
the stencils based on the smoothness of the function, which is being approximated. Ref.8 explains the 
WENO and the TVD methods and the formulas and Ref.9 gives the application of the E N 0  method to the 
N-S equations. Ref. 10 describes in detail the solution method implemented in this computation. 

At the outflow boundary, characteristic boundary conditions are used. At the wall, the simulation uses 
viscous conditions for the velocities and a constant temperature condition, and it computes density from 
the continuity equation. In the spanwise direction, symmetric and periodic conditions are used at the 
boundaries. In the mean flow computations, the simulation prescribes the free-stream values at the upper 
boundary, which lies outside the bow shock. In the unsteady computations, it superimposes the acoustic 
perturbations to the uniform mean flow at the upper boundary. The procedure is to first compute the 
steady mean flow by performing unsteady computations using a variable time step until the maximum 
residual reaches a small value -IO-”. These computations use a CFL number of 0.3. The next step is to 
introduce unsteady disturbances at the upper boundary of the computational domain and to perform time 
accurate computations to investigate the interaction and evolution of these disturbances downstream. 

The symmetric acoustic field that impinges on the outer boundary is taken to be in the following 
form. 

Here au,, pa,, are the acoustic wavenumber, and o is the frequency of the acoustic disturbance. The 
wavenumber in the y-direction E,, determines the incident angle of the acoustic waves and in this paper 
computations are performed for zero incident angle, E,, = 0.0. 

To investigate the effect of roughness element on the transition process, an isolated roughness 
element of Gaussian shape in the form 

7 (8) f = ,?, -u(X-X,)*  e 

is placed at x = xh. Here h is the height of the roughness and (T determines the width of the roughness in 
the streamwise direction. 

Results 
Computations are performed for a supersonic flow over a semi-infinite flat plate with a blunt leading 

edge. Table 1 gives the flow parameters and Fig. 1 shows the schematic diagram of the computational set 
up. The leading edge of the plate is modeled as a super ellipse of the form 
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y 2  + - = I .  
a4 b' (9) 

Here b is the thickness of the plate and in accordance with the experiment it is taken as O.OOO1 inches. It 
should be noted that the flat plate in the experiment has a beveled leading edge of angle 15 degrees and 
the leading edge radius is O.OOO1 inches (Fig. 9 in Ref. 7). The aspect ratio alb is taken as 10 hence the 
blunt leading edge is joined with the straight portion of the plate at x = 0. 001 in., which is at a Reynolds 
number of 32.0. 

ters for the w w  

Free stream Mach number: M,=3.5 

Free stream Reynolds number: Re, = 12* 106/ft 

Free stream density: p,=2.249* lo-' lbm/ft3 

Free stream pressure: p,= 187.74 lbf/ft? 

Free stream velocity: Uz=2145.89 Ws 

Free stream temperature: T,= 156.42 OR 

Free stream kinematic viscosity: v, =1.7882* lo4 ft?/s 

Wall temperature: = adiabatic condition 

Prandtl number: PI= 0.72 

Ratio of specific heats: y= 1.4 

Length scale /F- - - 5.892* (4 = 0.5 in.) 

The boundary layer thickness at x=l in.: &= .01275 in. 

Non4imensional frequency F= 1 * 

The non-dimensional frequency F is defined as F = -, 

wherefis the frequency in Hertz. 

is equivalent to 4 1 .O kHz 

23CV,f 

uf 

The grid is generated using analytical formulae. The grid stretches in the -q direction close to the wall 
and is uniform outside the boundary layer. In the 5 direction, the grid is symmetric about tlic 'leading edge 
and very fine near the nose and is uniform in the flat region. The grid is uniform in the spanwise direction. 
The outer boundary that lays outside of the shock follows a parabola with its vertex located a short 
distance upstream of the leading edge of the plate. The computational domain extends from x = -0.015 to 
12.0 inches in the axial direction. Calculations were performed using a grid size (3001*251*11). Due to 
the very fine grid requirement near the nose, the allowable time step is very small and the computations 
become very expensive to simulate the unsteady computations in the entire domain at once. To overcome 
this, calculations are performed in two steps. First, the computations are done near the nose region with a 
very small time step. Second, the flow properties in the middle of this domain are fed as inflow conditions 
for the second larger domain and the computations are carried out with a larger time step. The nose region 
domain extends up to x = 0.65 in. and the second domain starts at x = 0.3 inches. Grid refinement studies 
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are performed with different grid distributions near the nose region. Grid I is a basic grid of 
(801*251 * I  I )  points with fine grid near the nose and uniform grid in the flat plate region. Grid 2 is 
obtained by making the domain in the x and y directions half the size. This grid is finer in the shock 
region and in the axial direction. Grid 3 is created to make the grid across the shock finer than Grid 2. 
Grid 4 is the grid used in the computations with the roughness. This grid has very fine uniform grid near 
x = 0.1 inches where the roughness is located. I 

Linear instability 

As a prelude for future reference, in Fig. 2 the linear stability results for the similarity boundary layer 
over a flat plate is presented. The figure depicts the neutral stability diagram in (Re, F )  plane for different 
wave angles 0 ,45,  60 and 70 degrees. The figure also shows the N-Factor curves and the growth rates for 
the most amplified disturbances. The critical Reynolds number is about 193 and this occurs for an oblique 
wave of angle 60 degrees. The most amplified frequency is about F = 1.0-1.25*10-5 and the spanwise 
wavenumber of the most amplified wave is about /3 = 0.025. This corresponds to about 0.178 inches in 
dimensional units and is equivalent to about 14 boundary layer thicknesses. It is also observed that at 
higher Reynolds numbers Re > 1000, only the low frequency disturbances F < 3.0* are unstable. This 
implies that acoustic disturbance with frequencies less than 120 kHz may be the relevant frequency range 
for generating instability waves inside the boundary layer. The frequency of the most amplified wave is 
about 40-50 kHz and the maximum N-factor at x = 12 in. (Re = 3464) is about 8.6. 

Acoustic waves. 

The linearized Euler equations in a uniform mean flow are: 

dw 
dZ 

dP JP - + uo - + Po - dU + po - dv + po - = 0, 
dx ay dt dX 

The solution of this system can be written as 
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r >  

P 
U 

v 
W 

T 

' =  

Here the pressure p is in the form 

The dispersion relation among the wavenumbers a,, pa, and the frequency w is given by 

For zero incident angle E,, = 0, the wavenumber a,, can be expressed as 

is the sweep angle and the plus sign corresponds to the fast moving wave and the 

a 
minus sign corresponds to the slow moving wave. The corresponding phase speeds are C = U, -t case, 

w 
The wavenumber for the fast moving wave is a, < and for the slow moving wave 

'0 + a0 

w 
a, ' and the sweep angle is limited by 8: <cos -I(+). At M = 3.5, F = 1.25*10-5 the 

uo - a0 
wavenumbers of the fast moving and slow moving waves are a, < 0.00687 and a,, > 0.01237 and the 
sweep angle of the slow moving wave is limited to 73.39 degrees. Table 2 gives the wavenumbers and the 
wavelengths in dimensional units for the slow, the fast acoustic waves and for the neutral stability waves 
for Prn = 0.0 and 0.025. 
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W,'. Slow 

0.0 0.0 1237 
(0.359 in.) 

0.01757 
(0.253 in.) 

0.025 

Fast Neutral 

0.00687 0.0 1225 
(0.646 in.) (0.362 in.) 

0.00168 
(2.644 in.) (0.296 in.) 

wave 

0.0 1502 

The variation of the wavenumber a with the Reynolds number LL for a two-dimensional /? = 0.0 

and a three-dimensional /? = 0.025 instability waves are plotted in Fig. 3. The wavenumber for the two- 
dimensional wave decreases from 0.0 124 at a Reynolds number of 220 to 0.0 1 19 at a Reynolds number of 
2000. For the three-dimensional disturbance it decreases from 0.01775 at a Reynolds number of 190 to 
0.01285 at a Reynolds number of 2000. The Reynolds numbers at the neutral points are 820 and 610 
respectively for the two and three-dimensional disturbances and they are also marked in Fig. 3. The figure 
also depicts the range of the acoustic wavenumber a,, for the two and three-dimensional slow acoustic 
waves. It is seen that perfect matching in the wavenumbers occur at very low Reynolds number range 
where the disturbances are marginally stable. For the unit Reynolds number of 1 .O* 106/in., Reynolds 
number of 200 is located at .04 inches from the leading edge of the plate and the neutral point is located 
close to x = 0.36 inches. Hence there may be strong generation of instability waves in the nose region 
where the bluntness effects and the non-parallel effects will become important. 

/:a 

Mean flow. 

Figure 4 shows the mean flow density contours computed using the WEN0 code. Figure 4a shows 
the entire domain and Fig. 4b shows the flow field near the nose region. The outer boundary of the 
leading edge shock is located approximately at 0.00003 inches from the nose, which is 1/6'h of the leading 
edge thicknesses upstream. Figures 4(c) and (d) similarly show the density contours of the mean flow 
with the roughness element. The Mach wave originated from the roughness element propagates parallel to 
the Mach wave originated from the leading edge. The density profiles for the case without roughness at x 

= 0.01, 0.05, 0.25, 0.5, 1.0, 3.0 inches (& =loo, 224, 500, 707, 1000, 1732) are plotted in Fig. 5a. 
Figure 5b shows the same profiles in the similarity coordinates. The Blasius similarity profile is also 
included for comparison. It is seen that very close to the leading edge, there exists a strong shock and this 
compression expands over the leading edge and the shock becomes weaker away from the nose region. 
The boundary layer profiles slowly approach the Blasius similarity profiles close to x = 0.5 inches. 

Figure 6(a) shows the comparison between the growth rate and N-factors computed using the 
similarity profiles and the profiles obtained from the numerical simulation for the most amplified wave 
with F = 1.25* 10.' and /? = 0.025. Figure 6b shows the second derivative of the temperature for the two 
mean profiles at the station x = 5.0 inches. It is seen that the stability results obtained using the simulation 
profiles agree reasonably good with that is obtained using the Blasius similarity profiles. 

Interaction of three-dimensional acoustic waves with the boundary layer. 

After the mean flow is obtained, three-dimensional slow and fast acoustic disturbances are separately 
introduced at the outer boundaries and time accurate simulations are performed. The non-dimensional 
frequency and the spanwise wavenumber are F= 1.25" 10" and /? = 0.025. These parameters give the 
largest N-factor close to the experimental transition location. To remain in the linear regime, very small 
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initial amplitude of p,, Ipm = 1 .o * IO-’ is prescribed for the free-stream acoustic waves. Even with these 
small initial amplitudes, nonlinearity starts to develop near the end of the computational domain x - 10.0 
inches. 

Figure 7 shows the results for the evolution of the unsteady fluctuations obtained from the simulation 
for the slow wave at a fixed time while Fig. 8 shows the disturbances for the fast wave. Figures 7(a), 8(a) 
show the contours of the density fluctuations in the entire domain and Figs. 7(b), 8(b) depict the results 
inside the boundary layer. The perturbation field can be divided into four regions. One region is the area 
outside the shock where the acoustic waves propagate uniformly. The second region is the shock layer 
across which the acoustic waves are transmitted. The third region is the area between the shock and the 
boundary layer. This region consists of transmitted external acoustic field and the disturbances that are 
radiated from the boundary layer. The fourth region is the boundary layer where the boundary layer 
disturbances evoive. Tine figures show inat the disturbances inside the boundary iayer originate at the 
nose region. As these disturbances evolve downstream, the wavelength decreases as is clearly seen in the 
first 0.50 inches in Fig. 7(b). As noted earlier, the wavelength of the fast acoustic wave is about ten times 
longer than that for the slow wave. An interesting observation is the appearance of short wavelength 
disturbances inside the boundary layer starting from the nose region. Figure 9 shows the u-velocity 
fluctuation in the p-2 plane at x = 1.5 and 6.0 inches and the results are plotted for one wavelength in the 
spanwise direction. The disturbance is concentrated near the critical layer and as expected follows a 
cosine waveform in the spanwise direction. 

As described earlier, grid refinement studies have been performed with different grid distribution near 
the nose region. Figure 10 shows the pressure distribution along the wall obtained with different grids. 
Figure 1 1  shows the eigenfunction distributions near the wall and across the shock very near the nose 
region x = 0.01 and 0.20 inches. It is seen that all three computations give exactly the same results, except 
the shack becomes thinner with the fine grids, and confirm that the results obtained are not due to any 
numerical resolutions. 

Figure 12 shows the instantaneous pressure fluctuations along the wall for the slow and the fast waves 
and Fig. 13 shows the amplitude of the pressure fluctuations along the wall in a log scale. Figure 13 also 
includes the results from the parabolized stability equations (PSE) computations obtained for the same 
mean boundary layer profiles. The figures clearly show the initial generation and the eventual-exponential 
growth of the instability waves inside the boundary layer. The slow wave whose wavelengthis closer to 
the wavelength of the instability wave transforms into instability waves smoothly. The fast waves whose 
wavelengths are much larger are initially modulated by short wavelength disturbances. These short waves 
transform into instability waves and grow exponentially downstream. The growth of the disturbances 
agrees very well with the PSE results about one acoustic wavelength downstream of the neutral point. 
Following the PSE results up to the neutral point, the initial amplitude of the instability waves at the 
neutral point can be estimated. From these values the receptivity coefficients defined by the initial 
amplitude of the pressure fluctuations at the wall at the neutral point non-dimensionalised by the free- 
stream acoustic pressure can be evaluated. 

The computed receptivity coefficients for the slow and the fast waves are 
Crecpt,p,, s = 1.20 
Crecpt.p,ll ,F = 0.07 

Similarly, the receptivity coefficients based on the maximum density fluctuations inside the boundary 
layer normalized by pacare calculated. 
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The ratio of the receptivity coefficient between the slow and the fast modes are about 17.0. As expected, 
the slow modes whose phase speed are close to the neutral stability waves of the boundary layer excite the 
instability waves more efficiently than the fast waves. 

Figure 14 shows the wavenumber variation along the streamwise direction calculated from the 
unsteady fluctuations along the wall. This is achieved by first decomposing the fluctuations in to 
harmonic components of the form 

The wavenumber of the fluctuations are evaluated from the expression 

= ,ar + iai 
Figure 14a shows the wavenumber distributions for the whole domain and Fig. 14b shows the results near 
the nose region for the slow wave. The figure includes the wavenumber distributions obtained from PSE 
variations computations, linear stability computations. The wavenumber of the slow acoustic wave is also 
drawn in the figure. Beyond the initial nose region x > 0.3 in., the numerical wavenumber distribution 
agrees very well with the pse and the linear stability results. The interesting part is how the slow acoustic 
wave with a higher wavenumber interacts and merges with the instability waves inside the boundary 
layer. This is clearly illustrated in the Fig. 14b. The wavenumber near the nose region first decreases 
slowly up to x - 0.1 in., it then increases slowly for x > 0.1 in. and merges with the T-S wave around x - 
0.3 inches. 

Figure 15 shows the eigenfunction distributions obtained from the simulation and the linear stability 
computations for the density fluctuations at different axial locations. Figure 15(a) shows the distributions 
near the nose region and Fig. 15(b) shows the results in downstream region. It is seen that away from the 
nose region the computed eigenfunctions agree with the linear stability results and confirms the previous 
conclusions that the generated disturbances are in fact the T-S waves. Near the nose region the 
eigenfunctions differ from that for the instability waves and this region represents the interaction region. 

Figure 16 shows the evolution of pressure fluctuations along the wall for the cases with and without 
the isolated roughness element. The computations are performed for h = 0.0002 in., CJ = 5.0 and x,, = 0.1 
in. This gives h/6 = 1/20 and the width of the roughness equals to about two boundary layer thicknesses at 
x = x,,. There are no noticeable differences between the two results implying that the small isolated 
roughness elements do not enhance the instability waves and the instability waves are basically generated 
by the interaction of acoustic wave with the leading edge flow field. The variation of the wavenumber 
computed using Eq. (18) is also included in Fig. 14. It is interesting to see that the wavenumber follows 
the same variation as in the no roughness case except near the roughness and confirm the conclusion that 
the roughness does not affect the receptivity process at these small roughness heights. 

Discussion and Conclusions 

The boundary layer receptivity process due to the interaction of three-dimensional slow and fast 
acoustic disturbances with a blunted flat plate and the evolution of disturbances inside the boundary layer 
are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 
106/inch. The computations are performed with and without two-dimensional isolated roughness element 
located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full 
Navier-Stokes equations using the Sh-order accurate weighted essentially non-oscillatory (WENO) 
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scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta 
scheme for time integration. At this Reynolds number, the neutral stability region occurs within about 
one to two acoustic wavelengths from the leading edge. 

The mean flow computations show that the leading edge shock is located upstream at about 1/6‘h of 
the thickness of the plate and the strength of the shock weakens within a short distance downstream. It is 
also noted that the boundary layer profiles approach the similarity profiles within x - 0.5 to 1.0 inches 
from the leading edge. The linear stability and the N-Factor computations show that the stability 
characteristics of the computed and the similarity profiles are almost the same. 

The simulation of interaction of three-dimensional plane slow and fast acoustic waves with the 
boundary layer shows that the instability waves are generated very close to the nose region. The 
receptivity coefficients computed based on the pressure fluctuations at the wall at the neutral point are 
about 1.20 and 0.07 for the slow and fast acoustic waves respectively. They are about 8.40 and 0.47 based 
on the maximum density fluctuations at the neutral point. This implies that the slow waves are more 
efficient, about 17 times, in generating instability waves inside the boundary layer than the fast waves. 

The wavenumber distributions computed from the fluctuations inside the boundary layer revealed that 
it initially decreases gradually starting from the leading edge and becomes even smaller than the 
wavenumber for the instability waves. It then increases in downstream and merges with that for the 
instability waves. The disturbances inside the boundary layer induced by the long wavelength fast 
acoustic waves are modulated by short wavelength disturbances starting from the leading edge. These 
short waves initiate the instability waves in downstream. 

The simulation results for the amplification of disturbances inside the boundary layer agree very well 
with the PSE results downstream of the neutral point. This implies that beyond the initiarregion, the 
external forcing does not enhance or modify the amplitude of the instability waves. Simulation of the 
interaction of slow acoustic waves with an isolated two-dimensional roughness shows that small 
roughness elements do not enhance the amplitude of the instability waves. 

The above findings suggest that in two-dimensional supersonic boundary layers, the slow acoustic 
waves are the main catalyst in causing the transition. By knowing the approximate receptivity coefficients 
and the spectrum of the free-stream slow acoustic disturbances, the initial amplitudes of the instability 
waves can be approximately prescribed and linear and nonlinear PSE computations can be performed to 
predict the transition onset points accurately. 
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Leading edge thickness 2b = .0002 in. 

Leading edge 

Figure 1. Schematic diagram of the computational model. 

Reynolds number 4 Re, 

Figure 2. Stability and N-Factor dhgrams for a flat-plate boundary layer. M, = 3.5, T, = 156- R 
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Figure 3. Variation of the wavenumber with the Reynolds number for the instability waves and the 
wavenumber for the acoustic waves for /3 = 0.0 and 0.025. 
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Figure 4. Contours of the density for flow over a flat plate with a blunted leading edge at M = 3.5 
with and without roughness. h = 0.0002 in., x,, = 0.lin. 
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Figure 5. Mean density profiles at Merent x locations. 
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Figure 6. (a) Comparison between the linear stability results computed using the Blasius similarity 
profdes and the protiles from the numerical solution. (b) Comparison of second derivatives for the 

temperature. 
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Figure 7. Contours of the unsteady density fluctuations due to the 
interaction of a 3D slow acoustic wave with a flat plate with a blunted 
leading edge. F = 1.25*104, p = 0.025, incident angle 0.0. 
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Figure 8. Contours of the unsteady density fluctuations due to the 
interaction of a 3D fast acoustic wave with a flat plate with a blunted 
leading edge. F = 1.25*104, j3 = 0.025, incident angle 0.0. 
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Figure 9. Contours of the u-velocity in the y-z plane at x = 1.5 and 6.0 inches. 
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Figure 10. Pressure fluctuations along the wall near the nose region for three different grids. 
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Figure 11. Eigenfunctions of the density fluctuations near the nose for three different grids. 
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Figure 12. Pressure fluctuations along the wall for the slow and the fast waves. F = 1.25*10'4, 
&0.025. 
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Figure 13. Amplitude of the pressure fluctuation at the wall and comparison with the PSE. 
F=1.25*104, fl  = 0.025. 
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Figure 14. Wavenumber of the pressure fluctuation at the wall and comparison with the PSE 
F=1.2!j*1O4, fl  = 0.025. 
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Figure 15. Eigenfunctions of the density fluctuations and comparison with the linear stability 
calculations. F=1.25*104, /3 = 0.025. 
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Figure 16. Pressure fluctuations along the wall for the slow wave with and without roughness. 
F=1.25*104, /3 = 0.025. 
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